GP Emulation and Calibration of Coupling Constants

J. Coleman, S Cao, S. Bass

May 19, 2017

Overview

GP Review

Current Application

Prediction and Calibration

Overview

GP Review

Current Application

Prediction and Calibration

The Roll of GPs

Extraction of QGP Properties via a Model-to-Data Analysis

What are GPs?

▶ Formally, a Gaussian Process or GP is a stochastic process Y indexed by $\mathbf{x} \in \mathcal{X}$ such that realizations are jointly Multivariate Normal.

What are GPs?

- ▶ Formally, a Gaussian Process or GP is a stochastic process Y indexed by $\mathbf{x} \in \mathcal{X}$ such that realizations are jointly Multivariate Normal.
- Practically, a GP provides a way to (very quickly!) predict an unknown function's value at new points conditional on the function's value at training points.

What are GPs?

- ▶ Formally, a Gaussian Process or GP is a stochastic process Y indexed by $\mathbf{x} \in \mathcal{X}$ such that realizations are jointly Multivariate Normal.
- Practically, a GP provides a way to (very quickly!) predict an unknown function's value at new points conditional on the function's value at training points.
- ► A GP says, essentially, if the inputs are close then the outputs should be close
- ▶ It is completely determined by a **mean function** $\mu(\cdot)$ and a positive-definite **covariance function** $c(\cdot, \cdot)$ through

$$\mu_i = \mu(\mathbf{x}_i)$$
 $\Sigma_{ij} = c(\mathbf{x}_i, \mathbf{x}_j)$

GPs In Action - Toy Example

First, the points we're trying to predict

GPs In Action - Toy Example

Prediction = mean + uncertainty

The gray bands are 95% confidence intervals.

How It Works

Let

- $ightharpoonup f(\cdot)$ be our unknown function
- x_{train} be the training data
- ▶ **x**_{new} be the points we are trying to predict

$$\begin{pmatrix} f(\mathbf{x}_{\mathsf{new}}) \\ f(\mathbf{x}_{\mathsf{train}}) \end{pmatrix} \sim \textit{MVN} \left[\begin{pmatrix} \mu(\mathbf{x}_{\mathsf{new}}) \\ \mu(\mathbf{x}_{\mathsf{train}}) \end{pmatrix}, \quad \begin{pmatrix} c(\mathbf{x}_{\mathsf{new}}, \mathbf{x}_{\mathsf{new}}) & c(\mathbf{x}_{\mathsf{new}}, \mathbf{x}_{\mathsf{train}}) \\ c(\mathbf{x}_{\mathsf{train}}, \mathbf{x}_{\mathsf{new}}) & c(\mathbf{x}_{\mathsf{train}}, \mathbf{x}_{\mathsf{train}}) \end{pmatrix} \right]$$

How It Works

Let

- $ightharpoonup f(\cdot)$ be our unknown function
- x_{train} be the training data
- ▶ x_{new} be the points we are trying to predict

$$\begin{pmatrix} f(\mathbf{x}_{\mathsf{new}}) \\ f(\mathbf{x}_{\mathsf{train}}) \end{pmatrix} \sim \textit{MVN} \left[\begin{pmatrix} \mu(\mathbf{x}_{\mathsf{new}}) \\ \mu(\mathbf{x}_{\mathsf{train}}) \end{pmatrix}, \quad \begin{pmatrix} c(\mathbf{x}_{\mathsf{new}}, \mathbf{x}_{\mathsf{new}}) & c(\mathbf{x}_{\mathsf{new}}, \mathbf{x}_{\mathsf{train}}) \\ c(\mathbf{x}_{\mathsf{train}}, \mathbf{x}_{\mathsf{new}}) & c(\mathbf{x}_{\mathsf{train}}, \mathbf{x}_{\mathsf{train}}) \end{pmatrix} \right]$$

 $p(f(\mathbf{x}_{new}) \mid f(\mathbf{x}_{train}))$ very fast to find - Conditional Normal theory

Overview

GP Review

Current Application

Prediction and Calibration

Data Exploration/setup

- ▶ Two computer input parameters: $\mathbf{x} = \{\Lambda^{\text{jet}}, \alpha_s^{\text{med}}\}$
- ➤ 3 collision systems/beach energies, each at two centralities; 6 independent datasets
- ▶ For each dataset, R_{AA} measured at 7-14 p_T values; 66 total values

Model Setup

- Let \vec{y}^F be the field/experimental data
- Let \vec{y}^R be the "real" values; i.e., $\vec{y}^F = \vec{y}^R$ with error
- Let \vec{y}^M be the computer model data, a function of input parameter we care about
- Let Σ_v be the experimental covariance matrix

$$\vec{y}^F = \vec{y}^R(\mathbf{x}^*) + \epsilon \tag{1}$$

$$\vec{y}^R = \vec{y}^M(\mathbf{x}) \tag{2}$$

$$\epsilon \sim N(0, \Sigma_{\nu})$$
 (3)

$$\vec{\mathbf{y}}^F = \vec{\mathbf{y}}^R(\mathbf{x}^*) + \epsilon \tag{4}$$

$$\vec{y}^R = \vec{y}^M(\mathbf{x}) \tag{5}$$

$$\epsilon \sim N(0, \Sigma_{\nu})$$
 (6)

$$\vec{y}^F = \vec{y}^R(\mathbf{x}^*) + \epsilon \tag{4}$$

$$\vec{y}^R = \vec{y}^M(\mathbf{x}) \tag{5}$$

$$\epsilon \sim N(0, \Sigma_{\gamma})$$
 (6)

1. Train GPs on \vec{y}^M so that for any \mathbf{x} we can quickly predict \vec{y}^M

$$\vec{y}^F = \vec{y}^R(\mathbf{x}^*) + \epsilon \tag{4}$$

$$\vec{y}^R = \vec{y}^M(\mathbf{x}) \tag{5}$$

$$\epsilon \sim N(0, \Sigma_{\nu})$$
 (6)

- 1. Train GPs on \vec{y}^M so that for any \mathbf{x} we can quickly predict \vec{y}^M
- 2. Perform inference on x*
 - 2.1 Propose value \mathbf{x}_{prop}^*
 - 2.2 Predict $\vec{y}^M(\mathbf{x}_{prop}^*)$
 - 2.3 Accept based on likelihood of \vec{y}^F

Experimental Structure

- ► To simultaneously calibrate on all 6 datasets, we concatenate all experimental data
- ▶ I.e., $\vec{y}^F, \vec{y}^M \in \mathbb{R}^{66}$

Experimental Structure

- ► To simultaneously calibrate on all 6 datasets, we concatenate all experimental data
- ▶ I.e., $\vec{y}^F, \vec{y}^M \in \mathbb{R}^{66}$

 $\Sigma_y \in \mathbb{R}^{66 imes 66}$ is important. We treat as 6-block matrix; for kth block Σ_y^k :

$$\Sigma_{y}^{k} = \Sigma_{\mathsf{sys}}^{k} + \Sigma_{\mathsf{stat}}^{k} \tag{7}$$

$$\Sigma_{\mathsf{stat}}^{k} = \sigma_{i,k}^{\mathsf{stat}} \sigma_{j,k}^{\mathsf{stat}} \delta_{ij} \tag{8}$$

$$\Sigma_{\mathsf{sys}}^{k} = \sigma_{i,k}^{\mathsf{sys}} \sigma_{j,k}^{\mathsf{sys}} \exp\left[-\left(\frac{p_{i,k} - p_{j,k}}{\ell_{k}}\right)^{\alpha}\right] \tag{9}$$

- $ightharpoonup p_{i,k}$ is the *i*th p_T value of dataset k.
- σ_k^{stat} and σ_k^{sys} are the statistical and systematic errors, respectively, associated with R_{AA} values of collision system k

Overview

GP Review

Current Application

Prediction and Calibration

Validating the Emulator

To make sure our emulator predicts the computer model well, I trained it on 23 computer runs and predicted a holdout set.

$$\vec{y}^F = \vec{y}^R(\mathbf{x}^*) + \epsilon \tag{10}$$

$$\vec{y}^R = \vec{y}^M(\mathbf{x}) \tag{11}$$

$$\epsilon \sim N(0, \Sigma_{\nu})$$
 (12)

- 1. Train GPs on \vec{y}^M so that for any \mathbf{x} we can quickly predict \vec{y}^M
- 2. Perform inference on **x***
 - 2.1 Propose value \mathbf{x}_{prop}^*
 - 2.2 Predict $\vec{y}^M(\mathbf{x}_{prop}^*)$
 - 2.3 Accept based on likelihood of \vec{y}^F

GP Predictions from Input Prior Draws

AuAu200-cen-00-10 Prior

AuAu200-cen-40-50 Prior

PbPb2760-cen-00-05 Prior

GP Predictions From Input Posterior Draws

Input Posterior Distributions

Figure: Predictive means from posterior draws of input parameters

